Tuesday, July 18, 2023

Java programs

 

OBJECT-ORIENTED CONCEPTS

This program demonstrates the following object-oriented concepts:

  • Classes: Classes are the blueprints for objects. They define the attributes and methods of an object.
  • Objects: Objects are instances of classes. They have the attributes and methods defined by their class.
  • Constructors: Constructors are special methods that are used to initialize objects.
  • Methods: Methods are the actions that an object can perform.
  • Inheritance: Inheritance is the ability of one class to inherit the attributes and methods of another class.
  • Polymorphism: Polymorphism is the ability of an object to take on different forms.

 

 

// This program demonstrates the object-oriented concepts

 

class Person {

    // The `name` attribute is a string

    String name;

    // The `age` attribute is an integer

    int age;

 

    // The `Person` constructor takes the name and age of the person as parameters

    Person(String name, int age) {

        // The `this` keyword refers to the current object

        this.name = name;

        this.age = age;

    }

 

    // The `greet()` method prints a greeting message

    void greet() {

        System.out.println("Hello, my name is " + name);

    }

 

    // The `getAge()` method returns the age of the person

    int getAge() {

        return age;

    }

 

    // The `main()` method is the entry point of the program

    static void main(String[] args) {

        // Create two objects of the `Person` class

        Person person1 = new Person("John Doe", 30);

        Person person2 = new Person("Jane Doe", 25);

 

        // Call the `greet()` method on each object

        person1.greet();

        person2.greet();

 

        // Print the age of each object

        System.out.println("The age of person1 is: " + person1.getAge());

        System.out.println("The age of person2 is: " + person2.getAge());

    }

}

  

//Java program to perform all array operations

// This program first declares an array of integers and then prints the array. It then finds the sum, average, maximum, and minimum of the elements in the array. The program then sorts the array in ascending order and reverses the array. Finally, the program prints the sorted and reversed arrays.

import java.util.Arrays;

public class ArrayOperations {

    public static void main(String[] args) {

        int[] arr = {1, 2, 3, 4, 5};

        // Print the array

        System.out.println("The array is: " + Arrays.toString(arr));

        // Find the sum of the elements in the array

        int sum = 0;

        for (int i = 0; i < arr.length; i++) {

            sum += arr[i];

        }

        System.out.println("The sum of the elements in the array is: " + sum);

 

        // Find the average of the elements in the array

        double average = sum / arr.length;

        System.out.println("The average of the elements in the array is: " + average);

 

        // Find the maximum element in the array

        int max = arr[0];

        for (int i = 1; i < arr.length; i++) {

            if (arr[i] > max) {

                max = arr[i];

            }

        }

        System.out.println("The maximum element in the array is: " + max);

 

        // Find the minimum element in the array

        int min = arr[0];

        for (int i = 1; i < arr.length; i++) {

            if (arr[i] < min) {

                min = arr[i];

            }

        }

        System.out.println("The minimum element in the array is: " + min);

 

        // Sort the array in ascending order

        Arrays.sort(arr);

        System.out.println("The sorted array is: " + Arrays.toString(arr));

 

        // Reverse the array

        int[] reversedArr = new int[arr.length];

        for (int i = arr.length - 1; i >= 0; i--) {

            reversedArr[arr.length - 1 - i] = arr[i];

        }

        System.out.println("The reversed array is: " + Arrays.toString(reversedArr));

    }

}

Java program to perform all linked list operations.

This program first declares a linked list of integers and then adds elements to the linked list. It then prints the linked list, finds the size of the linked list, finds the first element in the linked list, finds the last element in the linked list, and removes the first element from the linked list. Finally, the program removes the last element from the linked list and prints the linked list again.

import java.util.LinkedList;

 

public class LinkedListOperations {

 

    public static void main(String[] args) {

        LinkedList<Integer> linkedList = new LinkedList<Integer>();

 

        // Add elements to the linked list

        linkedList.add(1);

        linkedList.add(2);

        linkedList.add(3);

        linkedList.add(4);

        linkedList.add(5);

 

        // Print the linked list

        System.out.println("The linked list is: " + linkedList);

 

        // Find the size of the linked list

        int size = linkedList.size();

        System.out.println("The size of the linked list is: " + size);

 

        // Find the first element in the linked list

        Integer firstElement = linkedList.getFirst();

        System.out.println("The first element in the linked list is: " + firstElement);

 

        // Find the last element in the linked list

        Integer lastElement = linkedList.getLast();

        System.out.println("The last element in the linked list is: " + lastElement);

 

        // Remove the first element from the linked list

        linkedList.removeFirst();

        System.out.println("The linked list after removing the first element is: " + linkedList);

 

        // Remove the last element from the linked list

        linkedList.removeLast();

        System.out.println("The linked list after removing the last element is: " + linkedList);

    }

}

 

Java program to create a singly linked list

class Node {

    int data;

    Node next;

    Node(int data) {

        this.data = data;

        this.next = null;

    }

}

class LinkedList {

    Node head;

    LinkedList() {

        this.head = null;

    }

    void addNode(int data) {

        Node newNode = new Node(data);

        if (this.head == null) {

            this.head = newNode;

        } else {

            Node currentNode = this.head;

            while (currentNode.next != null) {

                currentNode = currentNode.next;

            }

            currentNode.next = newNode;

       }

    }

    void printList() {

        Node currentNode = this.head;

        while (currentNode != null) {

            System.out.println(currentNode.data);

            currentNode = currentNode.next;

        }

    }

 

    public static void main(String[] args) {

        LinkedList list = new LinkedList();

        list.addNode(1);

        list.addNode(2);

        list.addNode(3);

        list.printList();

    }

}

 

This program creates a singly linked list and adds three nodes to it. The nodes contain the data 1, 2, and 3. The program then prints the list, which should print the following output:

1

2

3

 

Java program to create a doubly linked list

// A doubly linked list node

class Node {

    int data;

    Node prev;

    Node next;

 

    // Constructor

    Node(int data) {

        this.data = data;

        this.prev = null;

        this.next = null;

    }

}

 

// A doubly linked list

class DoublyLinkedList {

    // Head of the list

    Node head;

 

    // Tail of the list

    Node tail;

 

    // Constructor

    DoublyLinkedList() {

        this.head = null;

        this.tail = null;

    }

 

    // Add a node to the list

    void addNode(int data) {

        // Create a new node

        Node newNode = new Node(data);

 

        // If the list is empty, make the new node the head and tail

        if (this.head == null) {

            this.head = newNode;

            this.tail = newNode;

        } else {

            // Otherwise, add the new node after the tail

            this.tail.next = newNode;

            newNode.prev = this.tail;

            this.tail = newNode;

        }

    }

 

    // Print the list

    void printList() {

        // Start at the head of the list

        Node currentNode = this.head;

 

        // Print the data in each node

        while (currentNode != null) {

            System.out.println(currentNode.data);

            currentNode = currentNode.next;

        }

    }

 

    public static void main(String[] args) {

        // Create a doubly linked list

        DoublyLinkedList list = new DoublyLinkedList();

 

        // Add three nodes to the list

        list.addNode(1);

        list.addNode(2);

        list.addNode(3);

 

        // Print the list

        list.printList();

    }

}

This program creates a doubly linked list and adds three nodes to it. The nodes contain the data 1, 2, and 3. The program then prints the list, which should print the following output:

1
2
3

Java program to create a circular linked list

// A node in a circular linked list

class Node {

    int data;

    Node next;

 

    // Constructor

    Node(int data) {

        this.data = data;

        this.next = null;

    }

}

 

// A circular linked list

class CircularLinkedList {

    // The head of the list

    Node head;

 

    // Constructor

    CircularLinkedList() {

        this.head = null;

    }

 

    // Add a node to the list

    void addNode(int data) {

        // Create a new node

        Node newNode = new Node(data);

 

        // If the list is empty, make the new node the head and tail

        if (this.head == null) {

            this.head = newNode;

            newNode.next = this.head;

        } else {

            // Otherwise, find the tail of the list and add the new node after it

            Node currentNode = this.head;

            while (currentNode.next != this.head) {

                currentNode = currentNode.next;

            }

            currentNode.next = newNode;

            newNode.next = this.head;

        }

    }

 

    // Print the list

    void printList() {

        // Start at the head of the list

        Node currentNode = this.head;

 

        // Print the data in each node

        do {

            System.out.println(currentNode.data);

            currentNode = currentNode.next;

        } while (currentNode != this.head);

    }

 

    public static void main(String[] args) {

        // Create a circular linked list

        CircularLinkedList list = new CircularLinkedList();

 

        // Add three nodes to the list

        list.addNode(1);

        list.addNode(2);

        list.addNode(3);

 

        // Print the list

        list.printList();

    }

}

The do-while loop in the printList() method ensures that we print the data in all the nodes in the list, even the last node, which points back to the head.

Java program to perform stack and queue operations.

This program first declares a stack and a queue of integers. It then pushes and enqueues elements into the stack and queue, respectively. The program then prints the stack and queue, pops and dequeues elements from the stack and queue, respectively, and checks if the stack and queue are empty.

 

import java.util.Stack;

import java.util.Queue;

 

public class StackQueueOperations {

 

    public static void main(String[] args) {

        // Create a stack

        Stack<Integer> stack = new Stack<Integer>();

 

        // Push elements onto the stack

        stack.push(1);

        stack.push(2);

        stack.push(3);

        stack.push(4);

        stack.push(5);

 

        // Print the stack

        System.out.println("The stack is: " + stack);

 

        // Pop elements from the stack

        Integer poppedElement = stack.pop();

        System.out.println("The popped element is: " + poppedElement);

        poppedElement = stack.pop();

        System.out.println("The popped element is: " + poppedElement);

 

        // Check if the stack is empty

        boolean isEmpty = stack.isEmpty();

        System.out.println("The stack is empty: " + isEmpty);

 

        // Create a queue

        Queue<Integer> queue = new LinkedList<Integer>();

 

        // Enqueue elements into the queue

        queue.add(1);

        queue.add(2);

        queue.add(3);

        queue.add(4);

        queue.add(5);

 

        // Print the queue

        System.out.println("The queue is: " + queue);

 

        // Dequeue elements from the queue

        Integer dequeuedElement = queue.remove();

        System.out.println("The dequeued element is: " + dequeuedElement);

        dequeuedElement = queue.remove();

        System.out.println("The dequeued element is: " + dequeuedElement);

 

        // Check if the queue is empty

        isEmpty = queue.isEmpty();

        System.out.println("The queue is empty: " + isEmpty);

    }

}

Java program to perform priority queue operations.

This program first declares a priority queue of integers. It then adds elements to the priority queue, prints the priority queue, removes the element with the highest priority, and checks if the priority queue is empty.

 

import java.util.PriorityQueue;

 

public class PriorityQueueOperations {

 

    public static void main(String[] args) {

        // Create a priority queue

        PriorityQueue<Integer> priorityQueue = new PriorityQueue<Integer>();

 

        // Add elements to the priority queue

        priorityQueue.add(10);

        priorityQueue.add(5);

        priorityQueue.add(1);

        priorityQueue.add(7);

        priorityQueue.add(3);

 

        // Print the priority queue

        System.out.println("The priority queue is: " + priorityQueue);

 

        // Remove the element with the highest priority

        Integer highestPriorityElement = priorityQueue.poll();

        System.out.println("The element with the highest priority is: " + highestPriorityElement);

 

        // Check if the priority queue is empty

        boolean isEmpty = priorityQueue.isEmpty();

        System.out.println("The priority queue is empty: " + isEmpty);

    }

}



 Java program to reverse a linked list

 

public class Linked_List {

   static Node head;

   static class Node {

      int data;

      Node next;

      Node (int value) {

         data = value;

         next = null;

      }

   }

 

   // display the list

   static void printList(Node node) {

      System.out.print("\n[");

 

      //start from the beginning

      while(node != null) {

         System.out.print(" " + node.data + " ");

         node = node.next;

      }

      System.out.print("]");

   }

   static Node reverseList(Node head) {

      Node prev = null;

      Node cur = head;

      Node temp = null;

      while (cur != null) {

         temp = cur.next;

         cur.next = prev;

         prev = cur;

         cur = temp;

      }

      head = prev;

      return head;

   }

   public static void main(String args[]) {

      Linked_List list = new Linked_List();

      list.head = new Node(33);

      list.head.next = new Node(50);

      list.head.next.next = new Node(44);

      list.head.next.next.next = new Node(22);

      list.head.next.next.next.next = new Node(12);

      System.out.println("Linked List: ");

     

      // print list

      list.printList(head);

      head = list.reverseList(head);

      System.out.println("\nReversed linked list ");

      list.printList(head);

   }

}


================

create a doubly linked list and print all the nodes present in the list.

 

public class DoublyLinkedList { 

      //Represent a node of the doubly linked list 

      class Node{ 

        int data; 

        Node previous; 

        Node next; 

 

        public Node(int data) { 

            this.data = data; 

        } 

    } 

 

    //Represent the head and tail of the doubly linked list 

    Node head, tail = null; 

 

    //addNode() will add a node to the list 

    public void addNode(int data) { 

        //Create a new node 

        Node newNode = new Node(data); 

 

        //If list is empty 

        if(head == null) { 

            //Both head and tail will point to newNode 

            head = tail = newNode; 

            //head's previous will point to null 

            head.previous = null; 

            //tail's next will point to null, as it is the last node of the list 

            tail.next = null; 

        } 

        else { 

            //newNode will be added after tail such that tail's next will point to newNode 

            tail.next = newNode; 

            //newNode's previous will point to tail 

            newNode.previous = tail; 

            //newNode will become new tail 

            tail = newNode; 

            //As it is last node, tail's next will point to null 

            tail.next = null; 

        } 

    } 

 

    //display() will print out the nodes of the list 

    public void display() { 

        //Node current will point to head 

        Node current = head; 

        if(head == null) { 

            System.out.println("List is empty"); 

            return; 

        } 

        System.out.println("Nodes of doubly linked list: "); 

        while(current != null) { 

            //Prints each node by incrementing the pointer. 

 

            System.out.print(current.data + " "); 

            current = current.next; 

        } 

    } 

 

    public static void main(String[] args) { 

 

        DoublyLinkedList dList = new DoublyLinkedList(); 

        //Add nodes to the list 

        dList.addNode(1); 

        dList.addNode(2); 

        dList.addNode(3); 

        dList.addNode(4); 

        dList.addNode(5); 

 

        //Displays the nodes present in the list 

        dList.display(); 

    } 

} 



==========================

Try  Linked List here

https://www.w3schools.com/java/java_linkedlist.asp


==============

Java program that uses the Hashtable class:

import java.util.Hashtable;

public class HashtableDemo {

    public static void main(String[] args) {
        // Create a hashtable.
        Hashtable<Integer, String> hashtable = new Hashtable<>();

        // Add elements to the hashtable.
        hashtable.put(1, "One");
        hashtable.put(2, "Two");
        hashtable.put(3, "Three");

        // Get an element from the hashtable.
        String value = hashtable.get(2);
        System.out.println("The value for key 2 is: " + value);

        // Iterate through the hashtable.
        for (Integer key : hashtable.keySet()) {
            String value1 = hashtable.get(key);
            System.out.println("The value for key " + key + " is: " + value1);
        }
    }
}==================================================

Java program to implement Dijkstra's algorithm

import java.util.*;

public

class Dijkstra {

     static class Node {

        int vertex;

        int distance;

         Node(int vertex, int distance) {

            this.vertex = vertex;

            this.distance = distance;

        }

    }

 

    public static void main(String[] args) {

        // Create a graph

        Map<Integer, List<Node>> graph = new HashMap<>();

        graph.put(0, Arrays.asList(new Node(1, 10), new Node(2, 5)));

        graph.put(1, Arrays.asList(new Node(2, 3)));

        graph.put(2, Arrays.asList());

         // Initialize the distances

        int[] distances = new int[3];

        Arrays.fill(distances, Integer.MAX_VALUE);

 

        // Set the distance of the source vertex to 0

       distances[0] = 0;

         // Create a priority queue to store the

vertices

        PriorityQueue<Node> pq = new PriorityQueue<>((n1, n2) -> n1.distance - n2.distance);

        pq.add(new Node(0, 0));

         // While the priority queue is not

empty

        while (!pq.isEmpty()) {

            // Get the vertex with the minimum distance

            Node currentVertex = pq.poll();


            // For each neighbor of the current vertex

            for (Node neighbor : graph.get(currentVertex.vertex)) {

                // If the distance to the neighbor is less than the current distance

                if (distances[neighbor.vertex] > currentVertex.distance + neighbor.distance) {

                    // Update the distance to the neighbor

                    distances[neighbor.vertex] = currentVertex.distance + neighbor.distance;

                     // Add the neighbor to the

priority queue

                    pq.add(new Node(neighbor.vertex, distances[neighbor.vertex]));

                }

            }

        }

        // Print the distances

        System.out.println(Arrays.toString(distances));

    }

}


The above  program first creates a graph. The graph is a map of vertices to lists of neighbors. Each neighbor has a distance associated with it.

The program then initializes the distances to all vertices to infinity. The distance of the source vertex is set to 0.

The program then creates a priority queue to store the vertices. The priority queue is sorted by the distance of each vertex.

The program then iterates through the priority queue. For each vertex in the priority queue, the program iterates through its neighbors. If the distance to a neighbor is less than the current distance, the program updates the distance to the neighbor. The program then adds the neighbor to the priority queue. The program continues iterating through the priority queue until the priority queue is empty.

Finally, the program prints the distances.

 

 Java program to implement static Huffman coding:

 

import java.util.*;

public

class HuffmanCoding {

 

    static class Node implements Comparable<Node> {

        int frequency;

        char character;

        Node left;

        Node right;

         Node(int frequency, char character) {

            this.frequency = frequency;

            this.character = character;

            this.left = null;

            this.right = null;

        }

         @Override

        public int compareTo(Node other) {

            return this.frequency - other.frequency;

        }

    }

     public static void main(String[] args) {

        // Create a map of characters to frequencies

        Map<Character, Integer> frequencies = new HashMap<>();

        for (char c = 'a'; c <= 'z'; c++) {

            frequencies.put(c, 0);

        }

         // Read the input text and update the

frequencies

        Scanner scanner = new Scanner(System.in);

        while (scanner.hasNext()) {

            char c = scanner.next().charAt(0);

            frequencies.put(c, frequencies.get(c) + 1);

        }

 

        // Create a priority queue to store the nodes

        PriorityQueue<Node> pq = new PriorityQueue<>();

        for (Character c : frequencies.keySet()) {

            Node node = new Node(frequencies.get(c), c);

            pq.add(node);

        }

 

        // While the priority queue is not empty

        while (pq.size() > 1) {

            // Get the two nodes with the minimum frequencies

            Node left = pq.poll();

            Node right = pq.poll();


            // Create a new node with the sum of the frequencies of the two nodes

            Node parent = new Node(left.frequency + right.frequency, '\0');

             // Add the new node to the priority

queue

            parent.left = left;

            parent.right = right;

            pq.add(parent);

        }

         // Get the root of the Huffman tree

        Node root = pq.poll();

         // Create a map of characters to codes

        Map<Character, String> codes = new HashMap<>();

        traverse(root, "", codes);


        // Print the codes

        for (Character c : frequencies.keySet()) {

            System.out.println(c + ": " + codes.get(c));

        }

    }

 

    private static void traverse(Node node, String code, Map<Character, String> codes) {

        if (node.character != '\0') {

            codes.put(node.character, code);

        } else {

            traverse(node.left, code + "0", codes);

            traverse(node.right, code + "1", codes);

        }

    }

}

The above program first creates a map of characters to frequencies. The program then reads the input text and updates the frequencies.

The program then creates a priority queue to store the nodes. The priority queue is sorted by the frequency of each node.

The program then iterates through the priority queue. For each node in the priority queue, the program creates a new node with the sum of the frequencies of the two nodes. The program then adds the new node to the priority queue.

The program continues iterating through the priority queue until the priority queue is empty.

The program then gets the root of the Huffman tree and creates a map of characters to codes. The program traverses the Huffman tree and stores the codes for each character in the map. Finally, the program prints the codes.

===================



eLearning and Blackboard

  IT professional, U bring a unique set of skills and expertise that can greatly contribute to the successful development and implementati...